skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrov, Leonid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, there has been much progress in understanding stationary measures for colored (also called multi-species or multi-type) interacting particle systems, motivated by asymptotic phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric Macdonald polynomials). In this paper, we present a unified approach to constructing stationary measures for most of the known colored particle systems on the ring and the line, including (1) the Asymmetric Simple Exclusion Process (multispecies ASEP, or mASEP); (2) the q-deformed Totally Asymmetric Zero Range Process (TAZRP) also known as the q-Boson particle system; (3) the q-deformed Pushing Totally Asymmetric Simple Exclusion Process (q-PushTASEP). Our method is based on integrable stochastic vertex models and the Yang-Baxter equation. We express the stationary measures as partition functions of new "queue vertex models" on the cylinder. The stationarity property is a direct consequence of the Yang-Baxter equation. For the mASEP on the ring, a particular case of our vertex model is equivalent to the multiline queues of Martin (arXiv:1810.10650). For the colored q-Boson process and the q-PushTASEP on the ring, we recover and generalize known stationary measures constructed using multiline queues or other methods by Ayyer-Mandelshtam-Martin (arXiv:2011.06117, arXiv:2209.09859), and Bukh-Cox (arXiv:1912.03510). Our proofs of stationarity use the Yang-Baxter equation and bypass the Matrix Product Ansatz used for the mASEP by Prolhac-Evans-Mallick (arXiv:0812.3293). On the line and in a quadrant, we use the Yang-Baxter equation to establish a general colored Burke's theorem, which implies that suitable specializations of our queue vertex models produce stationary measures for particle systems on the line. We also compute the colored particle currents in stationarity. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. These are lecture notes on Random Matrices for the graduate topics course at University of Virginia, Spring 2025. Available at https://lpetrov.cc/rmt25/S25-rmt-lecture-notes.pdf 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  3. We study random permutations corresponding to pipe dreams. Our main model is motivated by the Grothendieck polynomials with parameter ß = 1 arising in the K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of its Grothendieck polyno- mial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process, we describe the limiting permuton and fluctuations around it as the order n of the permutation grows to infinity. The fluctuations are of order n$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for B = 1 Grothendieck polynomials, and provide bounds for general B. This analysis uses a correspondence with the free fermion six-vertex model, and the frozen boundary of the Aztec diamond. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. We investigate positivity and probabilistic properties arising from the Young-Fibonacci lattice $$\mathbb{YF}$$, a 1-differential poset on binary words composed of 1's and 2's (known as Fibonacci words). Building on Okada's theory of clone Schur functions (Trans. Amer. Math. Soc. 346 (1994), 549-568), we introduce clone coherent measures on $$\mathbb{YF}$$ which give rise to random Fibonacci words of increasing length. Unlike coherent systems associated to classical Schur functions on the Young lattice of integer partitions, clone coherent measures are generally not extremal on $$\mathbb{YF}$$. Our first main result is a complete characterization of Fibonacci positive specializations - parameter sequences which yield positive clone Schur functions on $$\mathbb{YF}$$. We connect Fibonacci positivity with total positivity of tridiagonal matrices, Stieltjes moment sequences, and orthogonal polynomials in one variable from the ($$q$$-)Askey scheme. Our second family of results concerns the asymptotic behavior of random Fibonacci words derived from various Fibonacci positive specializations. We analyze several limiting regimes for specific examples, revealing stick-breaking-like processes (connected to GEM distributions), dependent stick-breaking processes of a new type, or discrete limits tied to the Martin boundary of the Young-Fibonacci lattice. Our stick-breaking-like scaling limits significantly extend the result of Gnedin-Kerov (Math. Proc. Camb. Philos. Soc. 129 (2000), no. 3, 433-446) on asymptotics of the Plancherel measure on $$\mathbb{YF}$$. We also establish Cauchy-like identities for clone Schur functions (with the right-hand side given by a quadridiagonal determinant), and construct and analyze models of random permutations and involutions based on Fibonacci positive specializations and a version of the Robinson-Schensted correspondence for $$\mathbb{YF}$$. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  5. Abstract Many integrable stochastic particle systems in one space dimension (such as TASEP—Totally Asymmetric Simple Exclusion Process—and itsq-deformation, theq-TASEP) remain integrable if we equip each particle with its own speed parameter. In this work, we present intertwining relations between Markov transition operators of particle systems which differ by a permutation of the speed parameters. These relations generalize our previous works (Petrov and Saenz in Probab Theory Relat Fields 182:481–530, 2022), (Petrov in SIGMA 17(021):34, 2021), but here we employ a novel approach based on the Yang-Baxter equation for the higher spin stochastic six vertex model. Our intertwiners are Markov transition operators, which leads to interesting probabilistic consequences. First, we obtain a new Lax-type differential equation for the Markov transition semigroups of homogeneous, continuous-time versions of our particle systems. Our Lax equation encodes the time evolution of multipoint observables of theq-TASEP and TASEP in a unified way, which may be of interest for the asymptotic analysis of multipoint observables of these systems. Second, we show that our intertwining relations lead to couplings between probability measures on trajectories of particle systems which differ by a permutation of the speed parameters. The conditional distribution for such a coupling is realized as a “rewriting history” random walk which randomly resamples the trajectory of a particle in a chamber determined by the trajectories of the neighboring particles. As a byproduct, we construct a new coupling for standard Poisson processes on the positive real half-line with different rates. 
    more » « less
  6. The number of standard Young tableaux of a skew shape $$\lambda/\mu$$ can be computed as a sum over excited diagrams inside $$\lambda$$. Excited diagrams are in bijection with certain lozenge tilings, with flagged semistandard tableaux and also nonintersecting lattice paths inside $$\lambda$$. We give two new proofs of a multivariate generalization of this formula, which allow us to extend the setup beyond standard Young tableaux and the underlying Schur symmetric polynomials. The first proof uses multiple contour integrals. The second one interprets excited diagrams as configurations of a six-vertex model at a free fermion point, and derives the formula for the number of standard Young tableaux of a skew shape from the Yang-Baxter equation. 
    more » « less
  7. We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which appear new for n ≥ 5. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation. 
    more » « less
  8. We study random permutations arising from reduced pipe dreams. Our main model is motivated by Grothendieck polynomials with parameter $$\beta=1$$ arising in K-theory of the flag variety. The probability weight of a permutation is proportional to the principal specialization (setting all variables to 1) of the corresponding Grothendieck polynomial. By mapping this random permutation to a version of TASEP (Totally Asymmetric Simple Exclusion Process), we describe the limiting permuton and fluctuations around it as the order $$n$$ of the permutation grows to infinity. The fluctuations are of order $$n^{\frac13}$$ and have the Tracy-Widom GUE distribution, which places this algebraic (K-theoretic) model into the Kardar-Parisi-Zhang universality class. We also investigate non-reduced pipe dreams and make progress on a recent open problem on the asymptotic number of inversions of the resulting permutation. Inspired by Stanley's question for the maximal value of principal specializations of Schubert polynomials, we resolve the analogous question for $$\beta=1$$ Grothendieck polynomials, and provide bounds for general $$\beta$$. 
    more » « less
  9. Abstract We consider a process of noncollidingq-exchangeable random walks on Z making steps 0 (‘straight’) and −1 (‘down’). A single random walk is calledq-exchangeable if under an elementary transposition of the neighboring steps ( down , straight ) ( straight , down ) the probability of the trajectory is multiplied by a parameter q ( 0 , 1 ) . Our process ofmnoncollidingq-exchangeable random walks is obtained from the independentq-exchangeable walks via the Doob’sh-transform for a nonnegative eigenfunctionh(expressed via theq-Vandermonde product) with the eigenvalue less than 1. The system ofmwalks evolves in the presence of an absorbing wall at 0. The repulsion mechanism is theq-analogue of the Coulomb repulsion of random matrix eigenvalues undergoing Dyson Brownian motion. However, in our model, the particles are confined to the positive half-line and do not spread as Brownian motions or simple random walks. We show that the trajectory of the noncollidingq-exchangeable walks started from an arbitrary initial configuration forms a determinantal point process, and express its kernel in a double contour integral form. This kernel is obtained as a limit from the correlation kernel ofq-distributed random lozenge tilings of sawtooth polygons. In the limit as m , q = e γ / m withγ > 0 fixed, and under a suitable scaling of the initial data, we obtain a limit shape of our noncolliding walks and also show that their local statistics are governed by the incomplete beta kernel. The latter is a distinguished translation invariant ergodic extension of the two-dimensional discrete sine kernel. 
    more » « less
  10. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)